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Abstract

We investigate the impacts of school-based internet access on second graders’ test scores,

using over 2 million student observations from a panel of Peruvian public primary schools. We

identify effects up to 6+ years after installation on different cohorts of second-grade students,

exploiting variation in the timing of internet access induced by the rollout of a national program.

We find positive but modest short-run impacts, but importantly, these effects grow for subse-

quent cohorts. Indeed, short-run estimates alone would have led to different conclusions. These

dynamics underscore the value of extended evaluation windows to allow benefits of educational

technology to materialize.

In recent decades, developing countries have achieved large increases in school enrollment, par-

ticularly at the primary level. However, most remain far behind developed countries in terms of

school quality as measured by student achievement (Glewwe and Kremer 2006). New approaches to

improving school performance, such as Information and Communication Technologies (ICTs), have

garnered increasing interest. The promise of boosting modern-day digital competencies, promoting

interactive student-centered teaching models, and providing up-to-date learning materials even in

remote areas has encouraged developing countries to invest considerably in ICTs in schools (World

Bank, 2018; Escueta et al., 2017; One Laptop per Child, 2016; UNESCO, 2012; Trucano, 2016;

International Telecommunication Union, 2014).

Among ICTs, the internet in particular may have important pedagogical uses in developing

countries. Internet access can provide underserved students with otherwise unavailable sources of

information (Levin and Arafeh, 2002). Similarly, internet can expand teachers’ access to references

and teaching aids as well as their ability to share information among peers (Jackson and Makarin,
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2018; Purcell et al., 2013). However, as with many new technologies, benefits materialize only

after a period of learning and adaptation, suggesting the importance of understanding the dynamic

effects of ICT interventions over time.

Despite the potential of the internet to improve learning, few studies have rigorously evaluated

its impacts on student performance in developing countries. Though previous research in developed

countries has led to ambivalent conclusions on the effectiveness of internet access as a learning

input (Belo, Ferreira and Telang, 2014; Faber, Sanchis-Guarner and Weinhardt, 2015; Gibson and

Oberg, 2004; Goolsbee and Guryan, 2006; Machin, McNally and Silva, 2007; OECD, 2015; Vig-

dor, Ladd and Martinez, 2014), school-based connectivity can be potentially more important in

developing countries due to lower levels of teacher skills, larger class sizes, and limited access to

other conventional inputs.1 Additionally, since the broader literature on ICTs (Escueta et al. 2017

and Bulman and Fairlie 2016) typically examines bundles of interventions such as computer access,

learning software, and internet expansion2, it is not yet clearly understood how internet on its own

influences learning.3

Moreover, most prior studies of internet access — and of ICTs more generally — have been

based on short-term evaluation windows, and are thus only designed to detect somewhat immediate

treatment effects. Importantly, such studies may overlook potential longer term impacts that may

follow from an initial learning period, during which teachers, students, and administrators adapt

to new technology. Hence, detecting gains in learning that may arise over such a learning period

requires a longer evaluation window.

We examine the impact of internet access on the performance of the universe of students that

attended public primary schools in Peru that initially acquired internet between 2007 and 2020 or

that remained unconnected by 2020, emphasizing its dynamic effects in schools over time. Over

this period, more than 11,300 schools (which jointly enroll about 2 million students per year)

gained access to internet. We link administrative data on school-based access to internet with their

students’ math and reading scores from a large-scale national test that covers nearly the universe

of second graders in public schools in Peru between 2007 and 2016. We construct a panel dataset of

around 23,300 schools where we observe the scores of about 2.3 million second grade students during

1In a recent paper, Malamud et al. (2019) investigate the impact of home-based internet on Peruvian students’
school performance, finding no statistically significant effect on standardized test scores 9 months after the imple-
mentation of the program. The authors posit that too little time might be spent on computers at home for any
educational benefit to materialize. Relatedly, children might use internet as a tool for entertainment rather than
learning. Both of these problems might be reduced when internet is provided at school rather than home.

2Some notable exceptions analyze the individual impact of computer access (Beuermann et al., 2015; Cristia et al.,
2017; Barrera-Osorio and Linden, 2009; Mo et al., 2013; Toyama, 2015; de Melo et al., 2013; Sharma, 2014; Meza-
Cordero, 2017; Bai et al., 2016; Malamud and Pop-Eleches, 2011; Meza-Cordero, 2017; Sharma, 2014) or adaptive
learning software (Bando et al., 2016; Banerjee et al., 2007; Carrillo, Onofa and Ponce, 2010; He, Linden and MacLeod,
2008; Linden, 2008; Muralidharan, Singh and Ganimian, 2019; Araya et al., 2019) in developing countries. However,
there is little evidence on the impact of internet access.

3Previous work (e.g., Cristia, Czerwonko and Garofalo, 2014; Bet, Ibarraran and Cristia, 2014; Sprietsma, 2007)
has assessed programs providing school-based internet as part of broader ICT expansion schemes. However, these
papers do not aim to discern the effect of internet separately from that of other technologies.
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our study period. To fully exploit the longitudinal structure of the school data and identify dynamic

effects, we employ an event study framework in addition to a trend break analysis — approaches

which also allow us to detect and control for pre-existing trends in student performance. Since we

observe a large panel of schools over several years, we are also able to assess how other determinants

of school performance change over time, tracing out the dynamics of several important student,

teacher, and school-level inputs. This allows us to discuss various potential channels through which

internet affects student performance, as well as to explore the possibility that other confounding

factors drive our results.

We exploit plausibly exogenous variation in the timing of internet access and compare different

cohorts of second-grade students who attended these schools before and after they get connected

to internet. Using within-school variation in the timing of internet installation, we find that in-

ternet access leads to initial modest test score improvements of 0.028 standard deviations in math

and 0.017 standard deviations in reading for second-grade students in the first year after installa-

tion. Importantly, this advantage grows significantly over time, reaching 0.110 and 0.063 standard

deviations five periods after installation for math and reading, respectively. It is important to

underscore that our strategies only allow us identify school-level – as opposed to student-level –

dynamics. That is, we find that a second grade student in a school that has had internet for 5 years

performs 0.110 standard deviations better on math tests than a second grade student at the same

school before internet has been installed. The trajectory of estimated effects implies that schools

become more efficient in using the internet over time to produce improvements in students’ test

scores.

We posit that this growth in our estimated impacts over time reflects an adaptation period,

during which schools must learn to integrate new technologies. Namely, we observe that schools

respond to internet access by hiring teachers with formal training in digital skills, and that this

process follows only gradually. In particular, schools are 27% more likely to have a computer-trained

teacher by the fifth year after installation relative to before internet access. That the gradual growth

over time in test scores shadows growth in the staffing of computer-trained teachers suggests that

complementary investment in staff computer proficiency is needed to fully exploit internet-enabled

classroom capabilities.4 This finding aligns with a long line of previous literature examining the

impacts of general purpose technologies and the complementary investments and organizational

changes that ultimately drive long-run productivity gains (e.g. Brynjolfsson and Hitt 2000).

Furthermore, our data offer evidence for several additional channels through which internet

access improves test scores. First, we use a completely separate data source (the Peruvian National

Household Survey) to show that internet access at schools leads to meaningful increases in student

use of internet. 6 or more years after gaining connections at their schools, public primary school

4Similarly, evaluations of laptop provision in the U.S. (Hull and Duch 2019) and computer assisted learning in
China (Mo et al. 2015) estimate that the effects of ICT interventions grow over time. More generally, Jackson and
Mackevicius (2021) find that the benefits of increased school spending rise with years of exposure.
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students report an increase in internet usage of 122% relative to the period before their local schools

become connected. This suggests that increased use of internet by students partially explains the

improvements in student performance. Second, we present descriptive evidence of teachers’ use of

internet as a pedagogical tool. For this purpose, we use two nationally representative teacher surveys

(the National Survey of Teachers and the National Survey of Educational Institutions). Teachers

report that internet is one of the most important materials enhancing teaching. Moreover, teachers

at schools with good quality internet connections also report less difficulty performing teacher

activities than those without internet connections at school. Taken together, these findings indicate

that access to online materials may boost student performance above and beyond the impacts of

direct student use of internet-connected computers. We also find suggestive evidence that gains in

test scores are larger in schools with high student-to-teacher ratios and that short-run gains in test

scores appear largest for schools with relatively high teacher qualifications. However, the estimates

in these subsamples are somewhat imprecisely estimated so differences in estimated effects across

the groups are not statistically significant. Unfortunately, due to data limitations, we are not able

to examine all possible mechanisms. Notably, it might be that internet access prompted differences

in student engagement (e.g., attending classes more regularly, exerting more effort, etc.) or teaching

practices (e.g., teachers might allocate class time differently when technology is available). We also

lack detailed data about students’ backgrounds and teachers’ characteristics (age, experience, etc.).

These limitations prevent us from further exploring some potential sources of heterogeneity in our

study.

Our findings are robust to a number of alternative explanations. Concerning potential endogene-

ity in the timing of internet access, we find that, conditional on year and school fixed effects and a

set of time-varying school characteristics (e.g., school enrollments, infrastructure, and resources),

schools receiving access to internet do not exhibit systematic pre-trends in performance or different

levels of scores prior to access. Second, we also find that our results are not explained by concurrent

changes in several other important inputs (infrastructure, textbooks, teachers, or computers) —

though we recognize that this is not an exhaustive list of inputs — or by pre-existing trends that

differ by geographic areas, administrative units, or initial test performance. Third, while our main

specifications are based on an unbalanced sample of schools, our results are very similar when using

different sample restrictions (including a sample of non-attriting schools). Fourth, analyzing stu-

dent composition within schools shows that our findings are not likely to be driven by endogenous

sorting of students. Lastly, we show that our results are virtually identical using an alternative

estimator that avoids negative weighting and is robust to heterogeneous treatment effects.

We contribute novel insights and perspective to a nascent body of research in developing coun-

tries on the educational benefits of school-based internet access, as well as to a wider literature

concerning ICTs as schooling inputs.5 The size and time span of our data present opportunities to

5Another study, Hopkins (2014), also examines the relationship between internet access and test performance in
Peru using similar data. However, one important difference between our study and Hopkins (2014) is that we imple-
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complement and contextualize existing studies, which focus largely on short term effects (usually

within one academic year)6, typically estimated on smaller and more localized samples of schools

than ours. In contrast, we use our extended study period to analyze the effects of internet access

more than 6 years after it is introduced to schools. Indeed, in the absence of longer-run estimates,

our short-run estimates alone would have implied very different conclusions about the efficacy of

school-based internet. Thus, our results indicate that this longer evaluation window is highly rel-

evant to understanding the impact of internet access, due to the dynamic effects of internet on

learning over time. Additionally, the large size of our sample — containing over 23,000 public

schools — and the fact that we study a program that was rolled out nationally (affecting public

primary schools serving roughly 2 million children in a given year), allow us to precisely assess the

impacts of internet access in conditions relevant for policies implemented on a broad scale.

Finally, we make progress in identifying the gains that internet access produces over hardware

resources alone as we study the effect of internet access conditional on other computing resources.

Anecdotally, the usefulness of school computers without internet access has been limited by lack of

access to information (National Public Radio 2012) and the inability to obtain routine maintenance

and software updates — particularly in remote, difficult-to-reach locations (One Laptop per Child

2011). Indeed, previous studies find that computers alone (without internet access) have no dis-

cernible impacts on student learning (Bet, Ibarraran and Cristia 2014, Barrera-Osorio and Linden

2009, Cristia et al. 2017, Beuermann et al. 2015 Mo et al. 2013). In this study, we present some

correlational evidence that — consistent with previous studies — suggests that the impacts that we

find are not driven by an increase in computer access in schools that gained internet connections.

Moreover, while we acknowledge that we do not have a credible source of exogenous variation in

schools’ investments in computers, the patterns of computer access that we observe in our data

appear to be inconsistent with the dynamics in test scores.7

To the best of our knowledge, the scale, longitudinal length, and setting of this study, along

with the comprehensiveness of the available data uniquely address important gaps in the existing

literature. More broadly, our work contributes to understanding the role of internet access in

economic development. Prior research concludes that the spread of fast internet led to higher

employment, incomes, and wealth in African countries (Hjort and Poulsen 2019). Our results

imply that increased human capital production may factor importantly in this progress.

ment a school-fixed effects strategy whereas Hopkins (2014) compares internet-connected schools to non-connected
schools. For this reason, we regard Hopkins (2014) as being important for establishing a statistical relationship
between internet access and test scores, but one that is ultimately correlational rather than causal.

6However, evaluations beyond one year are becoming less rare; Mo et al. 2015 studies the impact of a 1.5 year
computer assisted learning program.

7We discuss more fully in Section 3 why we do not find it likely that concurrent changes in computing resources
are likely to explain our results.
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1 Setting and data

1.1 Education and ICT Access in Peru

Education in Peru is compulsory and free through the public school system beginning at age 3 and

continuing until the end of secondary school. In the past few decades, Peru has greatly increased

access to primary school (grades 1-6, approximately age 6-11), raising the net enrollment rate

from 85.6% in 1980 to 97.9% in 2015 (The World Bank 2016). At the same time, however, the

education budget has seen little growth, and thus greater enrollment over time has eroded per-

student resources (Saavedra and Suarez 2002). The World Bank (2012) finds that, within Latin

America, only the Dominican Republic has a lower education expenditure-to-GDP ratio than Peru.

This dearth of resources has been accompanied by Peru’s poor performance in the OECD’s

Program for International Student Assessment (PISA) — an international standardized test among

15 year olds. In 2012, Peru ranked last out of 65 participating countries in all three evaluated

subjects, with results revealing that most Peruvian students have serious deficiencies in math

(75% deficient), science (69%), and reading (60%). In 2015, Peru jumped to the 64th place (out

of 70 countries in the evaluation), nonetheless demonstrating that substantial progress remains

to be made. Widespread under-preparedness is evident as early as primary school. In 2007,

the Ministry of Education began administering yearly standardized tests, the National Student

Assessment or Evaluacion Censal de Estudiantes (henceforth ECE, described below), to all second

graders registered in classes with five or more students. The inaugural results of the ECE in 2007

showed that only 7% of students acquired skills mandated by the national curriculum in math and

13% in reading (Appendix Figure A.1). Despite improvement since then in test scores and in the

proportion of students meeting expected skill levels, the quality of schooling has continued to prove

inadequate for many children; even by 2016, less than 40% of second graders achieved proficiency

in math (46% in reading).

In the early 2000s, the Peruvian government launched Plan Huascarán, which produced much

of the variation in school internet access observed during our sample period. This project aimed

to “incorporate information and communication technologies to increase the coverage, quality,

decentralization, democratization, and equity of the Peruvian education system.” Project planners

ambitiously aimed to install hardware and internet in 32,000 schools by 2020.8 Plan Huascarán

targeted schools under public management, particularly in rural, peri-urban, and high poverty areas.

Officially, selection into the program was rationed, with each Local Educational Management Unit

(UGEL) allowed to request installation for a set quota of schools (see Appendix Figure A.2 for

an excerpt of the official Ministry of Education flow chart that outlined the specific prioritization

protocol under Plan Huascarán). As prerequisites for program selection, schools needed to have

electricity and a computer lab with anti-theft measures (i.e., perimeter fencing). Within each UGEL

8Though teacher training was officially part of Plan Huascarán, in practice there was little emphasis on teacher
training (Balarin (2013)).
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and level, prioritization among qualified schools was officially based solely on the size of the student

population, with larger schools receiving higher priority. Lists of eligible schools were aggregated

to the regional level and then submitted to Plan Huascarán headquarters, accompanied by data

sheets on the characteristics of each school listed, a sketch and description of each school’s computer

facilities, and the discussion minutes from each UGEL.9 Officially, no school was integrated into

the project without all required information.

As a consequence of initiatives such as Plan Huascarán and the One Laptop per Child program

(OLPC, undertaken by the Peruvian government in 2008)10, the ratio of students to computers in

primary schools fell dramatically from 240 to 6 between 2000 and 2014 . In parallel, the government

has steadily increased access to internet in schools (as described in Section 1.2.1). In 2013, the

Ministry of Education announced plans to triple the number of schools having internet access.

1.2 Data

Our primary analysis uses school-level data from two sources administered by the Ministry of

Education: the Censo Escolar (CE), an annual census of schools, and the Evaluación Censal de

Estudiantes (ECE), an annual standardized test of second graders’ skills.

1.2.1 Censo Escolar (CE) and School-based Internet Access

Each year, all school principals are required to submit two forms to the Ministry of Education.

Between April and July, principals complete a form on enrollment (by grade and age), teachers

(by qualification), available supplies and materials (e.g., books, computers, and laboratories), and

infrastructure (e.g., access to utilities, building characteristics, and internet connectivity). Between

December and February, another form is completed on year-end pupil outcomes (e.g., promotion

and repetition rates, number of pupils transferring to other schools).11 We refer to the CE for data

on school characteristics such as internet access, enrollment, teachers, educational materials and

resources, and physical infrastructure.12 Between 2007 and 2020, around 31,100 public primary

9A translated version of the school data sheet is provided in Appendix Figure A.3.
10Peru has been the single largest buyer of OLPC laptops and to date has distributed close to one million laptops,

mainly targeting school children in poor areas of the country. As our analysis to follow accounts for the total number
of computers in a school, including OLPC laptops, we indirectly control for the influence of OLPC. For a discussion
of the OLPC program in Peru, see Trucano (2012). In general, impact evaluations of OLPC in Peru suggest that the
provision of laptops did not improve student performance (Beuermann et al. 2015; Cristia et al. 2017). We address
the issue of concurrent increases in computing resources (including OLPC laptops) explicitly in Section 3.3.

11The school year in Peru runs from March to December.
12While this information is self-reported by school principals, the Ministry of Education applies different filters

and verifies the consistency of the data with secondary data sources. The CE forms are submitted to the Ministry
of Education electronically and include consistency rules to avoid reporting errors. Once the electronic forms are
submitted, the Ministry of Education validates the information with teacher payrolls, delivery records of materials,
and historical information on enrollment. To provide further evidence that schools do not strategically misreport
information (for example, inflating enrollment), we compare second grade enrollment as reported in the CE to the
number of students scheduled to take the exam in the ECE data. The median discrepancy in these numbers is 0 and
the average is 0.33 students (i.e. on average 0.33 more second grade students are reported in the ECE than in the
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schools reported administrative information in the CE.

We use information from the CE to determine the timing of initial internet connection among

schools in our sample. As detailed in Section 1.2.3 below, we focus on the period 2007-2016 (for

which we have student test scores). However we use information from the CE until 2020 (the most

recent round currently available) to identify the year in which schools initially install internet and

assign them accordingly in our event time specification (described in Section 2.1).13 This allows us

to increase our sample size for periods before internet is installed in schools and better assess any

potential pre-existing trends in schools prior to access to internet.

Administrators report in the first semester of every year whether their school currently has

access to internet. Though some schools report gaps in internet access, the data do not allow us

to distinguish between temporary outages and longer-term disruptions to connectivity.14 Based on

this information, we determine the first year in which a school reports gaining access to internet and

interpret this as the time of connection. In our estimation framework, this implies a conservative

estimate of the impact of internet access, because we treat schools that might have permanently

lost their connections as still being connected. Another benefit of using initial internet connection

rather than current access is that we avoid bias due to endogenous changes in access. We estimate

that 11,310 schools — and the roughly 2 million primary school students in these schools each year

— at some point gained internet connectivity between 2007 and 2020. This implies that the rate

of internet connection in schools increased from below 5% to more than 42% and that the share of

students with internet connection in their schools jumped from 23% to 81% over this time period

(Figure 1).

Most of the observed expansion in internet connectivity during this period was due to Plan

Huascarán. In Appendix Table A.1 we verify that the official qualification and prioritization rules

set by the Ministry of Education do in fact predict actual installation.15 Schools received priority

primarily based on quotas by province (Local Education Management Units, UGELs), high poverty

status, location in a rural or marginal urban area, public versus non-public management, the

presence of required infrastructure (including electricity, a computer lab, and anti-theft measures

such as perimeter fencing), and enrollment. Column 1 includes these characteristics and state-year

fixed effects to control for aggregate and state-level trends in internet connectivity. To capture high

poverty status, we include district-level fixed effects. We also include UGEL fixed effects to account

for the UGEL-specific quotas. As expected, all required/prioritization characteristics positively and

significantly predict internet access. In column 2, we add a control for perimeter fencing (available

CE); since the CE is reported earlier in the school year than the ECE, this discrepancy could arise naturally due to
students entering after the CE forms have been submitted.

13CE data have been collected since 2000. However, the CE has only included variables for internet access since
2006.

14Out of the 31,111 public primary schools with at least one year of data in the CE between 2006 and 2020, 29.4%
report not having access after having access in a previous year; about 44.1% of those schools regain internet access
at a later point.

15Note that the official prioritization rank and program status of schools under Plan Huascarán is not available.
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Figure 1: Internet Connectivity in Primary Public Schools, 2006-2020

The stock of schools that gained internet connections is based on the first year in which they
report internet access in the Peruvian Censo Escolar .

only for 2010 and later). Finally, in column 3, we include information from school data sheets

(number of computers used for instruction, number of computers used for administrative purposes,

and number of teachers), respectively. Since these factors predict internet access and are also

likely to influence student performance directly, we control for all of these measures in our main

specifications (except perimeter fencing due to data limitations).16

1.2.2 Evaluación Censal de Estudiantes (ECE)

The Ministry of Education also mandates the Evaluación Censal de Estudiantes (ECE), a yearly

standardized assessment of second graders’ skills, which is administered in late November or early

December (before the end of the school year). In order to ensure uniform testing environments —

and to prevent content leaks or influence from school personnel — the Ministry hires independent

staff to administer the test in all schools simultaneously. As the same test is given to all schools,

neither the content nor the testing environment varies by school characteristics. Furthermore, the

ECE was designed for comparability of results over time: experts defined a set of basic competencies

16It is not possible for us to calculate exactly how much of the overall increase in internet access over this period
is directly attributable to Plan Huascarán versus other efforts. We discuss the robustness of our results to restricted
samples of schools that likely gained access to internet only via Plan Huascarán in Section 3.4.
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prior to the test’s first administration. Hence, since its inauguration in 2007, the ECE has assessed

the same skill sets with considerable consistency. We use student-level ECE scores from 2007 to

2016.17 To account for differences in difficulty across cohorts and year-to-year changes in test score

dispersion, we standardize ECE scores across the universe of test takers in public schools within

each year. It is very important to highlight that the ECE is given to a different cohort of second

grade students each year, so we have a repeated cross-section of students from a panel of schools.

That is, we observe test scores for each student only once (in second grade).

The ECE gauges the academic performance of the vast majority of second graders in Peru,

targeting all public and private schools that meet two criteria: 1) having at least five second

graders enrolled during the test year, and 2) using Spanish as the primary language of instruction.

The rationale for the first criterion is entirely budgetary, as smaller schools are often in remote

areas and would take considerable resources to reach. As it stands, the ECE already requires

about 40,000 field workers each year. Schools teaching in indigenous languages are covered under

a separate testing schedule. In total, 14,000 – 19,000 primary public schools participated per year

(48% to 65% of all primary schools; see Appendix Figure A.4a). About 26% – 49% of schools were

exempt under the minimum enrollment or language criteria. The remaining schools (between 2%

and 11%) were not tested due to logistical problems. The coverage of the test was nonetheless very

broad: since the smallest schools were excluded by definition, and since schools in native language

tend to have modest enrollments, between 82% and 90% of all second graders in the country were

tested in the ECE in a given year (Appendix Figure A.4b).

1.2.3 Estimation Sample

In Appendix Table A.2 we account for the different steps we took to build our estimation sample.

Columns 1-3 characterize all public schools that appear in the CE during our study period. We

characterize these schools using information from 2007. When information for 2007 is not available,

we use the earliest available data for each school. Overall, there were 31,111 schools that reported

information in at least one of the rounds of the CE during this period. Our empirical strategies

exploit the timing of internet connection within schools. Therefore, in our sample we include all

schools that initially installed internet in 2007 or later and all schools that remain unconnected by

the end of our CE sample period (2020). We exclude all schools that were connected prior to 2007

(according to the 2006 CE), as we are unable to determine the initial year of access for these schools.

This only excludes a small share of public schools, as only 1,366 (4.3%) were internet-equipped by

2007. This leaves us with 29,745 schools, over 95% of all public primary schools in Peru (Appendix

Table A.2, columns 2 and 3). Though 18,435 schools (59.3%) remained unconnected by 2020, 11,310

17The ECE was not conducted in 2017 because of significant school absences due to El Niño and teacher strikes.
Starting in 2018, the test has been given only to a very small set of schools (around 1.7% of the schools tested in
2016) and a new sample of schools is chosen each year. Given that our identification strategy (described in Section
2.1) includes school fixed effects, we can only use ECE scores through 2016.
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schools (36.4%) gained access between 2007 and 2020. The sharp expansion in internet connectivity

during this period allows us to form insights about the effect of internet access using variation from

a large number of schools.

We then merge this information with annual test scores from the ECE, resulting in 26,075

matched schools (about 84% of all public schools; Appendix Table A.2, columns 5 and 6). The

sample of schools in columns 2-3 (all schools who gained access to internet between 2007-2020 or

did not have access by 2020) and columns 5-6 (for which we observe average scores) appear to be

nearly identical on observable characteristics.

All in all, our estimation sample includes 23,318 schools that were tested in the ECE in our

sample period (2007-2016), that gained internet between 2007 and 2020 or remain unconnected as

of 2020, and that are contain all of the necessary covariate information for our main specification

(described in Section 2.1). The final column of Appendix Table A.2 gives the summary statistics

for the estimation sample.

While schools that remained without connection to the internet by 2020 aid us mostly in the

identification of calendar year effects and covariate coefficients, the main source of variation in

our event study comes from schools that adopted internet between 2007 and 2020. Importantly,

the data suggest that schools that gained internet from 2007-2020 generally fall “between” the

early adopters (who received internet before 2007) and non-adopters in various measures of school

quality. Namely, early adopters appear to be schools with higher performance, larger enrollment,

and better infrastructure and educational inputs (e.g., piped water, libraries, administrative offices,

teachers, classrooms, computers, and textbooks). Conversely, non-adopters systematically appear

worse in these areas. Thus, the adopters that provide the variation to identify the effect of internet

access focuses neither on the best nor on the worst performing schools.

Within schools that gained access to internet in the study period, we note considerable variation

in the timing of access for our analysis. This allows us to implement the event study approach

described in Section 2.1. In Appendix Figures A.5 and A.6, we plot each “treatment cohort’s”

average math performance over time, which we normalize relative to year of internet access. For

reference, Appendix Figures A.7a and A.7b represent the performance of schools that gained access

prior to 2007 (the start of our sample period) and Appendix Figures A.7c and A.7d similarly display

the scores over (calendar) time for schools that had not gained access to internet by 2020 (the end

of our CE sample period).18 Generally, schools that connected later or remained unconnected by

2020 exhibit lower average test scores, indicating that variation in internet access across schools is

not random.

However, within a cohort of schools becoming connected in a given year (2007-2020), there do not

appear to be systematic trends in scores prior to internet access. This suggests that within cohorts

of treated schools, the timing of access is unrelated to test score trends on average. Furthermore,

18We cannot calculate event time for schools that gained access prior to 2007 or were unconnected in 2020 because
we do not know the initial year of internet installation for these groups.
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Appendix Figures A.7a and A.7b suggest that performance gains among treated schools are very

small initially but grow over the medium term. In contrast, the relative performance of schools

that had not been connected to the internet by 2020 declines over the period of analysis (Appendix

Figures A.7c and A.7d). Thus, if we regard the trends in scores in this group as the counterfactual

for performance in the absence of internet connections, the implied effects of internet on test scores

are larger than the raw trends in Appendix Figures A.5 and A.6 suggest.

2 Empirical strategies and results

2.1 Event study specification

In order to analyze dynamic impacts of internet access over time, we estimate the following event

study specification:

Yisr =
6+∑

t=−3

βt1 {Esr = t}+ γXisr + αs + θsr + εisr, t ̸= −1 (1)

Our primary outcomes of interest are standardized math and reading scores for second grade

student i in school s observed in year r (Yisr). Scores are normalized across the universe of Peruvian

public schools within each year. αs are school fixed effects, which capture all time-invariant observed

and unobserved school-level determinants of performance.19 Xir is a set of individual and time-

varying school characteristics that includes gender, class size, indicator variables for the number

of second grade classes within a school, total school enrollment, number of second grade students

scheduled for testing, facilities (piped water, library, administrative offices), and resources per

student (classrooms, computers and teachers). It is important to control for school size relative to

other schools within the UGEL because Plan Huascarán explicitly prioritized the schools with the

highest enrollment within each UGEL, meaning that enrollment ranking within UGEL is highly

predictive of access to internet. Larger schools are not only likely to differ systematically from small

schools in level terms, they are also likely to experience different time-variant shocks to test scores.

In light of this, our baseline specification includes year fixed effects that are specific to terciles of

baseline enrollment within each UGEL, θsr.
20

Let Is denote the year in which school s gains internet connection (the first year in the dataset

in which s reports internet access in the CE). Eisr represents time relative to internet access for

each school; specifically, Esr = r − Is. Each of the event study dummy variables is set to zero

for all schools that remain unconnected by 2020. We include these non-adopters in our estimation

19Recall that the ECE is given only to second grade students each year, so we observe each student’s scores only
once (in second grade) though we have a panel of schools. Because of this data structure, we cannot include student
fixed effects.

20We use baseline enrollment to avoid any potentially endogenous changes in enrollment with respect to school
internet access. Since the tercile is based on school enrollment in the first year a school is observed, it is time invariant.
Results that include year effects that are specific to quintiles of enrollment are very similar (available upon request).
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sample to help identify γ and the calendar year effects.21 The coefficients on the set of event study

dummy variables βt capture the path of test scores relative to the year before a school receives

internet access (i.e., relative to t = −1).22 One important feature in the timing of the two datasets

we use is that CE reports internet access in the beginning of the school year, while the ECE is a

year-end test. Any school that installs internet after the CE (April-July) does not report internet

access until the following calendar year. If internet installation occurs before the ECE exams (end

of November - December), students are exposed to internet access during at least part of the year

prior to reporting initial access in the CE. Therefore in merging internet information from the

CE to test scores from the ECE, we match test scores from the ECE to the internet status in the

CE of the following calendar year. This means that some schools acquire internet access in t = 0

(if installation occurred before submitting the CE information) while others acquire it in t = 1 (if

installation occurred after submitting the CE information). Unfortunately, school-level information

is not available for either the month of installation or completion of the CE, and so we are unable

to tell how many schools receive internet in t = 0 versus t = 1. Thus, in interpreting estimates

of βt it is important to keep in mind that t = 0 is a partially treated year for some schools and a

pre-treatment year for others, while t = 1 is a partially treated year for some schools and a (fully)

treated year for others.

By exploiting variation in the timing of internet access within schools (as well as additionally

controlling for aggregate year effects and a set of time-varying characteristics), we aim to identify

the effects of internet access separately from potential confounders that are fixed at the school

level. We consider this a refinement over Hopkins (2014) — who also examines the relationship

between internet access and test performance in Peru — but compares internet-connected schools

to non-connected schools. We use the event study framework to examine both pre-treatment trends

and dynamic effects in a non-parametric fashion from three periods before to more than six periods

after gaining internet access. We choose this event window prior to internet access because we have

internet installation data from the CE until 2020, allowing us to correctly assign event time only as

far back as t = −3 for all schools (given that our final year of test score data is 2016). We estimate

coefficients for each year relative to internet access up to t = 5. Because the number of schools in

our sample that had been connected to internet for more than five years declines substantially, we

group all periods t ≥ 6 for our estimation purposes. Standard errors are clustered at the school

level to allow for arbitrary serial correlation in εsr.

Figures 2a and 2b display the results of estimating Equation 1 on our main sample when the

outcomes considered are standardized math and reading scores, respectively. The full set of coeffi-

cient estimates for the event study dummy variables are reported in Appendix Table A.3. We find

21Including non-adopters also avoids the multicollinearity problem identified in Borusyak, Jaravel and Spiess (2021).
22Recent work (for example, Goodman-Bacon (forthcoming)) has illustrated issues with estimating treatment

effects using a two-way fixed effects model with staggered timing. In light of this, we show our results are robust to
alternative estimation strategies in Section 3.
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that, prior to school internet access (t < 0), math and reading performance was roughly constant

from year to year. Importantly, there are no apparent trends in test scores prior to internet access,

indicating that the timing of internet access within schools is unrelated to pre-trends in student

performance. In particular, we rule out the case in which internet installation is budgeted endoge-

nously as a reward for steadily improving test performance. While relative student performance

rises in all years following initial connectivity in both math and reading, immediate gains are small

in magnitude: 0.028 and 0.017 standard deviations in t = 1 (the first year of partial or full access

to internet in our schools) for math and reading, respectively. However, test score growth following

internet access is steady in both subjects. By year 5, scores are 0.110 standard deviations higher

for math and 0.063 standard deviations higher for reading relative to the year prior to internet

installation. Beyond five years of internet access, this effect increases to 0.141 and 0.076 for math

and reading, respectively.

Our findings echo those from other studies in developing countries that find limited or no impacts

of ICTs on test scores in the short run.23 Results from Figures 2a and 2b suggest that though

classroom internet is beneficial to learning, improvement in the initial years post-intervention is

small. The fact that our estimates grow over time, at least through the medium-term, is also

consistent with two other longer-term studies of ICTs in education — which have also supported the

need for an adaptation period to fully utilize new technologies (Hull and Duch 2019; Mo et al. 2015).

Interestingly, the dynamic path of tests scores appears to be linear with respect to school exposure

to internet for both subjects. This aligns with recent evidence from Jackson and Mackevicius (2021),

who find that the effects of increased school spending on educational attainment grow linearly with

years of exposure. It is interesting to note that many of the unguided ICT interventions (including

ours) yield zero or small short-term effects, while other evaluations of adaptive ICTs - such as,

computer assisted learning and related interventions - typically find much larger short-run effects

(0.18 to 0.59 standard deviations); e.g., see Bando et al. 2016, Banerjee et al. 2007, Beg et al. (2019),

Carrillo, Onofa and Ponce 2010, He, Linden and MacLeod 2008, Linden 2008, Muralidharan, Singh

and Ganimian 2019, and Araya et al. 2019.

In comparing our estimates to the existing literature, it is important to reiterate that we identify

school-level - as opposed to student-level - dynamics. Thus the increase in test scores that we observe

over time after internet installation are reflection of how schools adapt to a new technology and

become more efficient at improving test scores over time. In this way, impacts beyond the short

run in our context are not comparable to estimates one might expect from studies that follow

individuals over time.

23The majority of the studies in this literature focus on impacts within the first 18 months post intervention.
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(b) Standardized Reading Scores

Figure 2: Impact of Internet Access on Test Scores

The above figures plot the coefficients and 95% confidence intervals from estimating equation 1. Scores are stan-
dardized within each calendar year to have mean zero and standard deviation of one across the universe of test
takers in public schools. Coefficients capture the increase in test scores relative to the year before internet instal-
lation (t = −1). Note that due to the timing of the Censo Escolar relative to the ECE exam, some schools receive
internet access in t = 0 and some receive it in t = 1. For more details, see Section 2.1. Control variables include sex,
class size, indicator variables for the number of 2nd grade classes at the school, total school enrollment, number of
second grade students that took the ECE, facilities (computer room, library, administrative offices), resources per
student (classrooms, computers, and teachers), UGEL-specific enrollment tercile by year fixed effects, and school
fixed effects. The sample includes all grade 2 students in all public schools that gain internet between 2007 and
2020 or remain unconnected by 2020. Standard errors are clustered by school.15



2.2 Trend break specification

Though the shape of Figures 2a and 2b suggest a steadily increasing effect of internet access on

test scores over time, it does not explicitly test for a break in the trajectory of scores at the time

of internet installation. To do so, we estimate a linear trend break specification as follows:

Yisr = ϕ1Post-internet Accessir + ϕ2Event Timeir

+ϕ3Post-internet Accessir × Event Timeir + γXisr + αs + θsr + εisr (2)

Here, Post-internet Access is a dummy variable that is equal to one in all periods after internet

installation (t ≥ 0). Event Time is a linear term for time relative to the year prior to access, t = −1.

The control set (Xisr) is otherwise identical to that described in Section 2.1. In this specification,

ϕ1 captures the level shift in test scores in response to internet access; ϕ3 represents the change

in the linear time trend in math scores after schools gain internet access; and ϕ2 accounts for any

pre-existing linear trend. Based on the results in Section 2.1, it is unlikely that there are any

existing pre-trends. However, one benefit of this specification is that even in the presence of any

linear pre-trends in test scores, ϕ3 measures the impact of internet access on the growth in test

scores apart from any such trends.

Table 1: Internet Access & Test Scores: Trend Break Results

Dependent Variable: Standardized Test Score

Math Reading
(1) (2)

Post-internet Access 0.008 0.010
(0.011) (0.009)

Post-internet Access X Event Time 0.015*** 0.012***
(0.005) (0.005)

Event Time 0.006 -0.001
(0.005) (0.004)

p-value for PostXEventTime 0.007 0.008

Observations 2,253,853 2,252,368
Number of Schools 23318 23320

Scores are standardized within each calendar year to have mean zero and standard deviation of one across the
universe of test takers in public schools. Coefficients capture the increase in test scores relative to the year
before internet installation (t = −1). Note that due to the timing of the Censo Escolar relative to the ECE
exam, some schools receive internet access in t = 0 and some receive it in t = 1. Control variables include sex,
class size, indicator variables for the number of 2nd grade classes at the school, total school enrollment, number
of second grade students that took the ECE, facilities (computer room, library, administrative offices), resources
per student (classrooms, computers, and teachers), UGEL-specific enrollment tercile by year fixed effects, and
school fixed effects. The sample includes all grade 2 students in all public schools that gain internet between
2007 and 2020 or remain unconnected by 2020. Standard errors are clustered by school. Significance levels
denoted by: *** p< 0.01, ** p< 0.05, * p< 0.1.

Results from estimating equation 2 are displayed in Table 1. Though we observe a level shift in

both math and reading scores upon installation (0.008 and 0.010 standard deviations, respectively),

16



the immediate effect is small and we are unable to statistically distinguish these effects from zero.

On the other hand, the year on year gain in test scores in both math and reading are statistically

significant and the magnitude is meaningful (0.015 and 0.012 standard deviations, respectively).

This stands in contrast to the estimated pre-trends, which are close to zero and not statistically

significant.

3 Robustness checks

In this section, we address several other potential challenges to identification, namely endogenous

changes in sample composition in terms of both students and schools (including non-random at-

trition), concurrent changes in school resources, pre-existing trends that might differ by school

characteristics, and other potentially non-exogenous sources of variation in the timing of internet

access.24 Finally, we show that our results are robust to an alternative estimation method that

addresses many of the concerns raised by the recent literature on two-way fixed effects estimation

with staggered timing of treatment.

3.1 Unbalanced panel and attrition

As we use students from an unbalanced panel of schools (schools are included when they participate

in the ECE) observed over a limited window of time (2007-2016, years for which ECE data is

available), it is possible that our estimated treatment effects reflect changes in sample composition.

Namely, identification of pre-trends and treatment effects might rely on students from different

samples of schools.25 Appendix Figures A.9a and A.9b and columns 2 and 5 of Appendix Table

A.5 suggest that our main findings are not driven by this issue. Specifically, we restrict the sample

to students in schools that can appear at least twice prior to and twice following internet installation

(i.e., schools that installed internet between 2009 and 2015), for which we can observe both pre-

trends and treatment effects within the same school. Imposing this restriction drops about 2,000

schools from the sample, but the remaining sample is comparable along many observable dimensions

(see Appendix Table A.4). In this restricted sample, we find no statistically significant trends in

performance prior to internet access, and the estimated effects are similar in magnitude, statistically

significant, and show similar dynamics as those using the full sample.

School-level attrition from the panel may pose another compositional issue. Though school-level

24We also perform an exact randomization exercise, in which we randomly reassign schools’ initial year of internet
access while maintaining the actual distribution of installation. We perform the randomization and estimate equation
1 500 times and plot the median, 5th percentile, and 95th percentile of the resulting coefficients in Appendix Figure
A.8. For the pre-internet periods, the coefficients from the baseline specification are close to the median of the
coefficients from the placebo exercise (essentially zero), whereas the post-internet coefficients fall well outside the 5th
and 95th percentile of the placebo coefficients. We take this as additional evidence that the inference in our baseline
specification is appropriate.

25Relatedly, we find no evidence that the trend break estimates differ significantly across “early” and “late” adopting
schools (split by the median year of adoption).

17



attrition can happen for several reasons, Appendix Table A.6 shows that over two thirds of overall

attrition is likely due to a school dropping below the enrollment threshold.26 If internet access

affects enrollment, it may determine whether a school meets the 5-student criteria to be tested in

the ECE.27 To rule out that our results are driven by selective attrition, we estimate equations 1

and 2 on the restricted sample of schools with ECE scores and the full set of covariates in every

calendar year 2007-2016 (i.e., the sample of non-attritors). The results are displayed in Appendix

Figures A.10a and A.10b and columns 3 and 6 of Appendix Table A.5. Even among schools that

are observed in every year, we find that the estimated effects of internet access are sizable and

grow over time. The trend break results in columns 3 and 6 of Appendix Table A.5 show that the

estimated yearly gain in test scores due to internet access is similar to the baseline results (columns

1 and 3), though the trend break coefficients are not statistically significant. The “non-attritor”

sample is somewhat similar to the baseline sample along many observable dimensions, albeit higher

achieving and (somewhat naturally) larger in terms of enrollment (Appendix Table A.4).28

3.2 Student composition and endogenous sorting

Another related issue is that the composition of students within schools may change in response

to internet access. A priori, it is hard to tell the direction of the bias that this would entail. For

instance, parents who would otherwise not have sent their kids to school might decide to enroll

their children in a school connected to internet. If these previously out-of-school students would

have otherwise performed poorly, then our estimates of treatment effects are likely conservative.

Alternatively, motivated parents seeking learning opportunities for their children may decide to

transfer students from schools without internet to schools that gained connectivity. If these new

students are better achievers on average, then our findings of positive treatment effects may owe

to upward bias from changes in student composition.

It does not appear that an influx of high-achieving transfers or re-entrants affects our main

results. We find that grade 2 transfers, re-entry, and total enrollment do not increase in response

internet access in columns 1-3 of Appendix Table A.7.29 If anything, there are fewer transfers over

26About 56% of attrition is due to schools having fewer than 5 second grade students, and an additional 18% is
explained by having enrollment “near” the threshold (defined as having 5-8 second grade students). The remaining
attrition is either due to missing ECE scores for another reason or missing CE (covariate) information. Only a very
small portion of attrition is due to school closures.

27In Section 3.2, we provide direct evidence that internet access does not affect enrollment.
28Our results are also robust to using a very restricted sample that includes only students from schools that appear

in all event years in Appendix Figure A.11. With 10 years of data and a 10-period event window, we have no
variation in internet timing if we require all schools to appear in all event years. Thus we shorten the event window
to allow for this sample restriction. The post-internet point estimates are generally as large or larger in the fully
balanced sample as in the baseline sample. The fully balanced sample includes around 2400 schools (around 10% of
our baseline sample) because we can only include 3 “treatment cohorts” of schools (our baseline sample contains 14
cohorts). Therefore these estimates are considerably noisier.

29Transfers are students enrolled in the current year who were enrolled in a different school in the previous year.
Re-entrants are students that are currently enrolled but who were not enrolled in any school during the previous year
(i.e., dropouts who come back to school).
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time after a school connects to the internet, though the point estimate is small (column 1). We

further demonstrate that the makeup of the students taking the test does not appear to change

with internet access. Column 4 of Appendix Table A.7 illustrates that there is no effect of internet

on the proportion of enrolled students that actually take the ECE. These results are consistent

with Cristia et al. (2017) and He, Linden and MacLeod (2008), who find that neither hardware nor

CAI/CAL interventions has any significant effects on attendance. In column 5, we illustrate that

internet access does not seem to attract more advantaged students to schools, to the extent that

the proportion of native Spanish speakers enrolled captures student background.3031

3.3 Concurrent changes in school resources

Timing of internet access may also possibly correlate with changes in other school resources.32 For

example, it might be that internet provision is bundled with other inputs in a multifaceted approach

to improve quality of schooling.33 If this is the case, the improvement of students’ performance

that we observe might be due to increases in these other resources. Lacking data on school-level

spending, our approach is to examine the effects of internet access on specific school inputs.34. For

the most part, we do not find that the timing of internet access is correlated with increases in other

observable inputs (Appendix Table A.9). Classrooms and textbooks, overall teachers (excluding

computer teachers, which are separately discussed in Section 4.3.1), and qualified teachers (those

with a pedagogical or university degree) per student actually fall slightly after internet access

(though the point estimate is very small; columns 1-4).35 However, in column 5, we note an increase

in computing resources (which includes OLPC laptops) at the time of internet installation; on the

other hand, the estimate of the trend break is negative and significant. More concretely, though

the estimates in Appendix Table A.9 imply that there is an increase in computers per student by

0.008 in the year internet is installed (6% relative to the pre-internet mean), computers per student

steadily drop to pre-internet levels in year 4 and lower than pre-internet levels thereafter. In other

words, the dynamic pattern of computers per student is nearly opposite of the pattern in test

score improvements; after an immediate increase, we see computers per student decline over time

30The proportion of Spanish-speaking students is positively related to test scores.
31In Appendix Figure A.13, we show the results of the event study analysis when considering the outcomes in

Appendix Table A.7. Consistent with the trend break results in Appendix Table A.7, we find no statistically significant
patterns in the effects on these outcomes.

32All of our specifications include school and UGEL-specific enrollment tercile-year effects as well as time-varying
school characteristics. We show that our results do not depend on the inclusion of covariates in Appendix Table A.8.

33It could also be the case that internet access at schools is correlated with alternative sources of internet. However,
we find that only 15% (29%) of students who used internet at school also use it at cyber-cafes (or at home) according
to the 2016 Peruvian National Household Survey (ENAHO). Additionally, our results are unchanged if we include a
control for whether the town nearest the school has a cyber cafe.

34Using state-level data on education budgets from the Peruvian Ministry of Economy and Finance’s Integrated
System of Financial Administration, we find that state-level spending in computing and telecom equipment is not
related to spending in other categories (such as payroll and goods and services). Results available upon request.

35We also find no effect on teachers’ contract types (permanent or temporary). Results available upon request.
Our data do not contain any other information on teachers, aside from gender.
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whereas we see very small impacts on test scores at the time of installation that grow larger over

time. Moreover, numerous studies (nearly all RCTs) find that non-internet connected computers

have no impact on student test performance (Bet, Ibarraran and Cristia 2014, Barrera-Osorio and

Linden 2009, Cristia et al. 2017, Beuermann et al. 2015 Mo et al. 2013).36 Thus, we find it very

unlikely that our results are merely a reflection of a concurrent change in computers. However, we

acknowledge that we do not have a source of purely exogenous variation in computers.

3.4 Differential pre-trends and other sources of endogenous internet connec-

tions

Another possibility is that access to internet is correlated with pre-existing trends in test scores. For

example, districts with faster growing economies might be better able to finance internet expansions,

increase public spending on education, or otherwise improve student learning. In Appendix Table

A.12 we show that our results are robust to allowing for an array of group-specific pre-trends.

These include groups that are defined administratively (i.e., by Local Educational Management

Unit, UGEL), geographically (district, the finest geographical unit we observe), and by initial

academic performance (captured by pre-internet test score deciles). Including UGEL-specific pre-

trends (column 2) is important for ruling out endogenous selection for internet installation at higher

levels of government (e.g. if the central government allocated more internet funds to UGELs with

higher test score growth, even though the official UGEL-level quotas were determined solely by

student enrollment). Allowing for pre-trends that are specific to initial test performance (column

4) is also useful in ruling out possible reversion to the mean, as we allow schools with initial poor

performance to be on a separate score trajectory than high performing schools. The point estimates

of the level shift and trend break in test scores are all stable in terms of sign, magnitude, and

statistical significance across specifications; if anything, the magnitudes and statistical significance

are slightly higher when we include district- and initial scoring decile-specific pre-trends. Overall,

we take the evidence in Appendix Table A.12 to indicate that pre-existing trends in test scores and

reversion to the mean do not confound our estimates of the effect of internet access.

Finally, we show that our results are not likely driven by schools that are potentially gaining

internet access endogenously. While Plan Huascarán is likely to be the most important source

of variation in internet access during our study period, schools whose principals become more

resourceful or whose parents improve their motivation might have gained access through other

sources. To account for this possibility, we perform two additional checks. First, we show that

36In Appendix Table A.10, we show that non-internet enabled computers are generally uncorrelated with test
scores using the sample of schools that do not gain access to the internet during our sample period. For schools
than remain unconnected by 2020, we find no statistically significant correlations between computers and test scores
and correlations are small in magnitude. To make this point more directly, we perform some back of the envelope
calculations (displayed in Appendix Table A.11). Even after taking into account the increase in computer resources
that we find in Appendix Table A.9 and the correlations we document in Appendix Table A.10), increases in computers
alone can explain very little of the observed rise in test scores (at most, 0.91% for math and 0.84% for reading).
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the results to excluding schools in non-complying UGELs, defined as UGELs in which more public

primary schools become connected to the internet than planned under the official Plan Huascarán;

see columns 2 and 5 of Appendix Table A.13.37 In this restricted sample, the estimated effects of

internet are larger than in the baseline specification and statistically significant. Second, the results

are also robust to excluding schools that potentially gained access to internet through means other

than Plan Huascarán, i.e. those schools that are located in areas with some alternate form of

internet access (proxied by the existence of local cyber cafes) prior to school-based internet access

(columns 3 and 6 of Appendix Table A.13). The idea behind this restriction is that it would be very

difficult for schools to install internet other than through Plan Huascarán in places where there is

no existing internet infrastructure (and thus no cyber cafes). The effect of school-based internet

access is similar in this sample of schools (though now it is not statistically significant).

3.5 Two-way fixed effects with staggered treatment timing

Recent work (for example, Goodman-Bacon (forthcoming)) raises some important issues with using

two-way fixed effects estimation when there is staggered timing of treatment. We show that these

issues do not explain our main estimates by illustrating robustness to the estimator proposed in

Sun and Abraham (forthcoming). Similar to Callaway and Sant’Anna (forthcoming), the Sun and

Abraham (forthcoming) method identifies cohort- (defined by installation year) and time-specific

average treatment effects and then aggregates those individual treatment effects (the weighting

method differs across the two papers)38. Doing so avoids potential biases that may be present

under the standard two-way fixed effects event study methodology. The results using the Sun

and Abraham (forthcoming) estimator are displayed in Appendix Figure A.12. The patterns and

magnitudes of these estimates are very similar to our main estimates.

4 Explaining dynamics and identifying potential mechanisms

To better understand the mechanisms behind our main results, we now turn to alternate sources

of data. We begin by examining student-level mechanisms and show that school-based internet

access increases students’ internet usage. Next, we use descriptive data to investigate teacher-level

mechanisms, i.e., teachers’ use of internet over and above students’ internet usage in the classroom.

We find that public primary school teachers in internet-connected schools find a variety of teaching

37We calculate the quotas as follows: first, we obtain annual quotas per UGEL from the Ministry of Education
(published in 2004). Second, we multiply the annual quota by 13 (to reflect 13 years between when the quotas were
published in 2004 and the end of our sample period, 2016) and then by 0.7 (to reflect that 50% of the quota was
for primary (only) schools and 20% was for integrated (primary and secondary) schools). We then define complying
UGELs as those with no more connected schools than the imputed quota for 2016. This is likely to overstate the
number of non-complying UGELs, as the program expanded in 2007 when it became part of Directorate General of
Educational Technologies (DIGETE).

38Sun and Abraham (forthcoming) weigh these cohort-specific effects by the distribution of cohorts and the relative
time indicators.
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activities to be less difficult than those without access. We also show that the effects of internet

access on school performance appear somewhat larger for schools with high student to teacher

ratios and - in the short run - where teachers have more qualifications, though the differences are

not statistically significant. Finally, we turn to school-level mechanisms. We analyze the effects of

internet installation on the hiring of specially-trained teachers and find evidence that schools make

complementary investments in these types of teachers following internet access. We recognize that

we are unable to explore all potentially important mechanisms due to data limitations; notably,

we lack data on student-level mechanisms such as attendance and engagement and teacher-level

mechanisms such as classroom practices.39

4.1 Student-level Mechanisms

4.1.1 Does access to internet in schools increase internet use among students?

We show that internet access in school effectively translates into increased use by students. To do

this, we turn to the Peruvian National Household Survey (ENAHO) because the CE data do not

contain any information on individual students or internet usage. We construct a repeated cross

section of all primary school students enrolled in public schools from the 2007-2016 rounds of the

ENAHO. The ENAHO collects two crucial pieces of data. First, it collects individual information

about internet usage during the 30-day period previous to the survey. Second, it gathers household

GPS locations (village location in rural areas or the centroid of the neighborhood block in urban

areas). While the ENAHO does not elicit the particular primary school that each student attends,

we can infer the school that a student is most likely to attend by assigning each student enrolled in a

public primary school to the nearest public primary school.40 In the ENAHO data, we observe over

55,000 students that are likely to attend 4,693 of the 23,318 schools (20.1%) in our main estimation

sample.41

We then estimate our event study specification (Equation 1) with an indicator variable for

students’ internet use (from the ENAHO) as the dependent variable. We regress this variable

on event time dummies based on access to internet in the student’s closest school (from the CE

data). We include the same set of school control variables as in Section 2.1 and add household and

individual controls (student’s age, grade, native language, household size, and the age, sex, and

39We find that dropout and grade completion are not systematically related to internet access (results available
upon request). This is consistent with Cristia, Czerwonko and Garofalo (2014), who similarly find no effects of access
to technology on dropout in secondary schools.

40In matching students to schools, we match only if there is a public primary school within 10km of the household
and that is operating in the current survey year. Using this method, the median distance between a student and
his/her matched school is 0.33 km. The estimates below are robust to increasing the maximum distance to 20 km or
reducing it to 5 km.

41The reason we are only able to match 20.1% of schools is that our school data cover the universe of schools, while
the household survey covers only a random sample of students each year; by its nature, it will not cover students
from all schools in the ECE and CE data. In fact, the ENAHO samples about 0.4% of households in Peru in a given
year. Even with this low coverage of households, we are able to match over 20% of schools.
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Figure 3: Impact of Internet Access at Schools on Students’ Internet Use

The above figures uses data from household surveys (ENAHO), 2007-2016. Control variables include sex, class size, indicator
variables for the number of 2nd grade classes at the school, total school enrollment, number of second grade students that
took the ECE, facilities (computer room, library, administrative offices), resources per student (classrooms, computers, and
teachers), UGEL-specific enrollment tercile by year fixed effects, and school fixed effects. The estimation sample includes all
sampled students attending public primary schools that gain internet after 2007 or remain unconnected by 2020. Standard
errors are clustered by school.

education of the household head). Importantly, our specification also includes school fixed effects.

Thus, our event study coefficients capture whether the changes in internet access within schools

increase internet usage among students likely to attend them.

We present these estimates in Figure 3. We find that students become much more likely report

using the internet after their nearest public school has gained access to the internet. We see no

evidence of pre-trends with respect to student internet access. After 6 or more years of in-school

access, students’ probability of having used the internet in the last thirty days increases by 8.8

percentage points, or 122% over the mean prior to school-based internet connections. This suggests

that increased use of internet might be able to explain a portion of the improvements in student

performance that we document in Section 2.

4.2 Teacher-level Mechanisms

To complement these results, we present suggestive evidence based on descriptive statistics from

two nationally representative surveys of schools in Peru: the 2014 National Survey of Educational

Institutions (ENIE) and the 2014 National Survey of Teachers (ENDO). These surveys directly

interview teachers and include information about their use of internet use in classrooms and their

perceptions of the advantages of ICTs in education. Unfortunately, neither survey provides school
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identifiers linking these surveys to the CE or ECE. However, they allow us to characterize teachers’

approaches to internet use in Peruvian schools by the end of our period of analysis.

The ENIE suggests a considerable degree of student exposure to internet in the classroom by

2014: among those who use it, 76% report using the internet at least once per week (and, on

average, for 1.85 hours per week). Information in the ENDO also supports the notion of regular

internet use in classrooms. As of 2014, 31% of Peruvian public primary school teachers at internet-

connected schools listed internet-connected computers among the top 3 most-used classroom tools.

Among schools with internet access, only very basic materials (such as photocopies and flip charts)

score higher in this ranking, relative to internet-connected computers. Moreover, teachers view the

internet as critical for the success of their students. 83.2% of second grade teachers in public schools

with internet access believe internet increases students’ access to information that is otherwise

unavailable to them and 81.7% state that it improves collaborative learning among students. Among

primary school teachers, the most often-cited school factor considered to negatively affect student

learning is lack of access to new technologies, including the internet.

4.2.1 How do teachers use the internet?

On the other hand, student use of internet-equipped computers is only one way in which internet

access could benefit students; it also can serve as a tool for teachers themselves. For example,

teachers can access “off the shelf” lesson plans, repositories of practice questions, instructional

aids, etc. According to Sandro Marcone (the former director of Plan Huascarán), what teachers

demanded most from these programs was not only classroom resources themselves but lesson plans,

saying essentially ‘tell me what to teach’ (Balarin (2013)). In the 2014 ENDO, 63% of teachers

at internet-equipped primary schools considered access to internet and technology a top 3 factor

in enhancing teaching performance— a larger proportion than those who listed either reference

materials (38%) or networking with colleagues (38%). Over 64% of teachers at internet-connected

public primary schools use the internet to access virtual pedagogical courses; the only other category

with higher reported use is for email correspondence. Furthermore, school-based internet may be

very important for teachers who otherwise might not have access to the internet. Among public

primary school teachers, nearly half (44%) do not have internet access at home.

We use the data in the ENDO to estimate some suggestive correlations of teachers’ ease to

perform certain tasks and their access to internet. Public primary school teachers that have access

to school-based internet in “good condition” report that teaching activities are less difficult than

those without access, even conditional on teacher and school observable characteristics (Appendix

Table A.14). These activities include communicating with and motivating students, selecting and

making good use of methodology and materials, using time effectively in the classroom, teaching

according to different levels of student learning, and addressing the academic problems of students.

Thus, teacher access to online materials may boost student performance above and beyond the

impacts of direct student use of internet-connected computers.
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4.2.2 Heterogeneity by class size

We next examine heterogeneity along the lines of class size, following Barrow, Markman and Rouse

(2009). One might expect that the effects of internet (and other ICTs) may be stronger in larger

classes for a variety of reasons. For example, previous work suggests that ICTs may provide students

with more individualized attention than they would otherwise receive from teachers. If ICTs reduce

the time teachers spend in group activities (for which internet might aid through interactive tools),

they might be able to increase the time they allocate to individualized instruction. In particular,

teachers assigned to larger classes might be more constrained in providing individualized instruction,

and thus may be expected to see larger gains from ICTs.

Alternatively, internet access might be especially useful in strengthening the effectiveness of

group work. For example, children may be more likely to focus on a group learning activity that

involves watching a video or playing an educational game online than more traditional paper- or

text-based activities. As mentioned, the overwhelming majority (81.7%) of teachers in internet-

connected schools believe that internet access enhances collaborative learning among students

(ENDO, 2014). This implies that internet connectivity would be very useful in classrooms with

many students, where teachers rely heavily on group work. For both of these reasons, we expect

internet access to matter more for schools with high versus low student to teacher ratios (STR).

Splitting schools by the pre-internet median STR, we find that the positive effects of internet

access are concentrated among schools with high STRs. We define “high STR” and “low STR”

groups as follows. First, we calculate the total number of teachers per second grade student (we

do not use the number of teachers exclusively dedicated to second grade, because many smaller

schools assign teachers to multiple grades). Then, we calculate each school’s pre-internet average

STR (time-invariant); this includes all observations for schools that remain unconnected by the

end of the CE sample period (2020). Finally, we divide the schools into high and low STR groups

based on having a pre-internet average STR above or below the median. In Figures 4a and 4b,

the high and low STR trends in test scores prior to internet access are similar, but diverge once

internet is introduced. In low STR schools, the effects are much smaller (and close to zero for

reading). From Figures 4a and 4b, we can see that the 95% confidence intervals of the event study

indicators for low and high STR schools overlap. However, the overall pattern seems to suggest

larger average gains for high STR schools. We test this in our trend break specification. Columns 1

and 2 Appendix Table A.15 confirm that the level shift and trend break in test scores are larger in

high STR schools (though not statistically significant so). Thus we take these results as suggestive

that the effects of internet are overall stronger in larger classes.

4.2.3 Heterogeneity teacher qualifications

Another possibility is that ICTs generate gains in student learning because they compensate for

the lack or low quality of other inputs. For example, Jackson and Makarin (2018), determine that

the benefits — in terms of math achievement — of providing teachers with online access to “off the

shelf” lesson plans were larger among students with weaker teachers. Relatedly, some have found
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Figure 4: Heterogeneity by Student to Teacher Ratios: Event Study Results

For each of the above figures, the sample is split based on each school’s pre-internet average ratio of second graders to total
teachers (STR) — high (low) STR schools fall above (below) the median pre-internet STR. The pre-internet median is calculated
using all schools, including ones that do not have internet by 2020. Coefficients capture the increase in test scores relative to
the year prior to a school receiving internet access (t = −1). Note that due to the timing of the Censo Escolar relative to the
ECE exam, some schools receive internet access in t = 0 while some receive it in t = 1. Control variables include sex, class size,
indicator variables for the number of 2nd grade classes at the school, total school enrollment, number of second grade students
that took the ECE, facilities (computer room, library, administrative offices), resources per student (classrooms, computers,
and teachers), UGEL-specific enrollment tercile by year fixed effects, and school fixed effects. The sample includes all grade 2
students in all public schools that gain internet between 2007 and 2020 or remain unconnected by 2020. Standard errors are
clustered by school. 26



that the success of ICT interventions may depend on whether they displace traditional instruction

or constitute additional learning activities outside of traditional classroom hours (as part of an

after school tutoring program, for example, as in Linden 2008). In cases where ICTs substitute for

traditional instruction, impacts may depend on the quality of instruction that the new technology

is displacing. Such is hypothesized in Bulman and Fairlie (2016, p. 20), “[...] Interestingly, evidence

of positive effects appears to be the strongest in developing countries. This could be due to the

fact that the instruction that is being substituted for is not as of high quality in these countries.”

Conversely, ICTs could be more effective when teachers are more highly qualified if, for example,

teachers with post-secondary degrees may be better able to adapt to and use new technologies.

Using the 2014 ENDO, we observe that more qualified teachers (e.g. those holding a college degree

or higher) are more likely to report internet-connected PCs as one of the three most often used

classroom tools than those without a college degree (34% versus 28%).

To shed some light on which effect is stronger, we examine heterogeneity in results by the level

of qualifications that a school’s teachers have obtained. In Figures 5a and 5b, we see that there is

very little difference in the estimated effects across schools with low and high teacher qualifications.

Here, we measure teacher qualification as the per student number of teachers with a pedagogical

or university degree. We estimate the average ratio of qualified teachers-to-students by school

using the pre-internet period (including all observations from schools that remain unconnected

by 2017), and split the sample in two groups based on the sample median across schools. Those

with ratios above (below) the sample median are classified as schools with “high” (“low”) teacher

qualifications. The only noticeable distinction is that the short-run gains in test scores (within the

first 3 years of access) appear to be higher when schools have teachers with more qualifications; this

can also be seen in columns 3 and 4 of Appendix Table A.15), where the level-shift appears larger

for high qualification schools (though not statistically significantly so). This is consistent with the

possibility that teachers with more qualifications are better able to immediately use the internet

efficiently, while it takes longer for teachers without these qualifications to do so. However, after

year 4, gains are similar across schools with high and low teacher qualifications.

4.3 School-level Mechanisms

4.3.1 Complementary investments in trained teachers

One explanation for why we observe delayed impacts of internet access may be that schools require

teachers with digital and internet skills in order to incorporate the new technology into the class-

room. To investigate this possibility, we study whether schools respond to internet access by hiring

teachers with expertise in “computer and information technology.” This includes both teachers

trained to teach computer skills, as well as teachers who themselves underwent advanced educa-

tion relating to computers; hereafter, these are referred to as “computer teachers.” We estimate

equation 1 using an indicator for the presence of a computer teacher as the outcome.

Figure 6 shows that internet access is accompanied by a steady increase in the likelihood a

school has a computer teacher that levels off 2 years post-internet installation; by year 4, this
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Figure 5: Heterogeneity by Teacher Qualifications: Event Study Results

For each of the above figures, the sample is split based on each school’s pre-internet average number of teachers with a pedagogical
or higher education degree per student over the sample period relative to the median of all schools’ sample averages. The pre-
internet median is calculated using all schools, including ones that do not have internet by 2020. Coefficients capture the
increase in test scores relative to the year prior to a school receiving internet access (t = −1). Note that due to the timing of the
Censo Escolar relative to the ECE exam, some schools receive internet access in t = 0 while some receive it in t = 1. Control
variables include sex, class size, indicator variables for the number of 2nd grade classes at the school, total school enrollment,
number of second grade students that took the ECE, facilities (computer room, library, administrative offices), resources per
student (classrooms, computers, and teachers), UGEL-specific enrollment tercile by year fixed effects, and school fixed effects.
The sample includes all grade 2 students in all public schools that gain internet between 2007 and 2020 or remain unconnected
by 2020. Standard errors are clustered by school.
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results in a 55% increase in the probability that a school has a computer teacher over the pre-

internet likelihood. When taken together, the findings for computer teachers and test scores are

consistent with the idea that schools may need time to make complementary investments to fully

exploit new classroom technologies, such as teachers with computer training. However, because the

presence of a computer teacher is a function of internet access (and is not exogenously given), we are

not fully able to show the impact of the complementarity of both inputs on school performance.42
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Figure 6: Internet Access and Presence of a Computer Teacher

Coefficients capture the increase in the likelihood of having a computer teacher on staff relative
to the year prior to a school receiving internet access (t = −1). Note that due to the timing
of the Censo Escolar relative to the ECE exam, some schools receive internet access in t = 0
while some receive it in t = 1. Control variables include sex, class size, indicator variables
for the number of 2nd grade classes at the school, total school enrollment, number of second
grade students that took the ECE, facilities (computer room, library, administrative offices),
resources per student (classrooms, computers, and teachers), UGEL-specific enrollment tercile
by year fixed effects, and school fixed effects. The sample includes all grade 2 students in
all public schools that gain internet between 2007 and 2020 or remain unconnected by 2020.
Standard errors are clustered by school.

5 Conclusions

We find evidence that the introduction of internet to Peruvian primary schools produces econom-

ically meaningful improvements in student performance as measured by standardized test scores

42For example, we do not estimate equation 2 including a triple interaction between post-internet access, event
time, and presence of a computer teacher because as shown in Figure 6, schools hire computer teachers as a lagged
response to gaining internet access.
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for grade 2. Gains increase over time, growing from 0.017-0.028 standard deviations in the year

of installation to 0.063-0.110 standard deviations 5 years after installation (depending on the sub-

ject). Importantly, there are no apparent pre-existing trends in test scores prior to internet access,

suggesting little role for reverse causality. Using a trend break specification, we confirm that there

is a trend break in test scores that occurs at the time of internet access. In the medium term, the

yearly gain in test scores is about 0.012-0.015 standard deviations. These results, based on over

2.2 million students from a large panel dataset of more than 23 thousand schools, are robust to

a number of potential confounding factors, including changes in sample composition with respect

to either schools or students, changes in school resources, and endogenous timing of installation

with respect to prior trends in test performance. In our setting, the nationwide scale of roll-out,

large sample of students and schools, and extended time frame uniquely enable the analysis of this

technology’s application at the farthest-reaching level of policy.

On the one hand, previous research on ICTs has found that providing ICT hardware with few

or no complementary learning tools has little immediate impact on student performance (Bet,

Ibarraran and Cristia 2014; Barrera-Osorio and Linden 2009; Cristia et al. 2017; etc.). Our short

run results (based on up to 1 year after internet installation) confirm that any effects of school-based

internet access are small in magnitude — and thus perhaps impossible to detect in smaller samples

of schools. On the other hand, medium run gains are sizable, pointing towards the necessity of

a longer evaluation window for understanding the effectiveness of ICT interventions. Ultimately,

our estimated effects of internet access between the second year and more than five years after

internet installation still fall below prior estimates of the impact of computer assisted learning

and instruction. While school-based internet does not fully confer the benefits of individualized

pedagogical tools, it may provide access to learning resources that are otherwise unavailable to

many students in developing countries.

Interestingly, we find that providing internet access in schools is comparable to other interven-

tions in terms of cost effectiveness. Specifically, we find that the cost per student of raising test

scores by 0.01 standard deviations ranges between $0.60 and $5.20, depending on the subject and

the assumptions about the cost of internet installation.43 This range makes school-based internet

43We calculate the lower- and upper-bound cost effectiveness of internet access in Appendix Table A.16. The upper
bound of costs are based on costs of two recent large contracts (in 2016 and 2019) that would expand internet access
in public schools in Peru, according to the Ministry of Education. There are two reasons why this might overestimate
the per-student cost of internet installation for the schools in our sample. First, these contracts reflects the costs
of internet connection for those schools who had not received access at least by 2016 (or 2019). It is reasonable
to assume that schools that got connected earlier would have had lower per-student connection costs because they
were more urban and had higher enrollments (Appendix Table A.2). Second, the recent contracts established that
in many cases the service would include a combination of optic fiber connections and other more expensive types of
access (i.e., through satellites, radio links, etc.). These more expensive connections likely reflect that schools with
recent connections were in more distant and inaccessible areas. The lower bound of costs are based on residential
connections with a bandwidth of 500 megabytes per second. These costs are based on Telefonica del Peru’s rate, as
advertised in their webpage (www.movistar.com.pe) during October 2021. Telefonica del Peru is the largest internet
provider in the country and, by November 2019, concentrated 70% of all landline internet access in Peru. While such
type of connection can potentially provide access to several computers in classrooms, it is likely to underestimate the
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neither the most or least cost-effective within a wide variety of educational interventions in a num-

ber of different settings (see Appendix Table A.17). With future potential technological advances

leading to reductions in the cost of internet provision, the cost effectiveness of this policy could

increase.

Based on two additional nationally representative surveys of households and teachers, we present

evidence about students’ and teachers’ use of internet. On one hand, internet connection in schools

does make students more likely to directly access this tool. On the other, it appears that internet

helps teachers increase their effectiveness through access to additional online teaching resources

(e.g., off-the-shelf materials, teaching materials, etc.). Gains in test scores are somewhat concen-

trated among schools that have high student-teacher ratios. Hence, school-based internet may

generate important gains in learning particularly when the number of teachers per student is con-

strained below the optimum. We also find that the short-run improvements in test scores are higher

in schools where more teachers hold pedagogical or university degrees (though not statistically so),

suggesting that teacher qualifications may be an important complementary input to new technol-

ogy. However, we find that, over time, schools with lower teacher qualifications are able to benefit

from access to internet as well.

We provide supporting evidence that achievement gains are slow to emerge because schools need

time to adapt to new technologies. Specifically, after installing internet public schools require time

to augment their staff with teachers experienced in computers and information technology. We

thus concur with several prior studies finding that student achievement begins to increase only as

teachers learn to integrate new technology into their curricula (Hull and Duch 2019, Mo et al. 2013,

Sprietsma 2007).

However, the interpretation of the results presented is subject to a number of limitations. While

we characterize teachers’ and students’ use of internet through secondary data sources, we are

unable to directly incorporate measures of their use of technology as a mediating factor in our

analysis. We are largely unable to explore heterogeneity in the effectiveness of school-based internet

based on student characteristics. Indeed, previous work suggests that individual heterogeneity -

especially with regard to initial achievement - significantly determines how technology affects the

learning process (Bai et al. 2016; Barrow, Markman and Rouse 2009; Linden 2008; He, Linden

and MacLeod 2008; Muralidharan, Singh and Ganimian 2019). Future research on heterogeneous

impacts of internet in education could bear broad implications for inequality within and across

learning environments.

Perhaps most notably, our results speak only to school-level dynamics and may mask impor-

tant individual-level dynamics. Thus it is still an open question whether access to school-based

technology might produce longer-term effects – for example, at higher schooling levels or later in

the labor market. We consider longer-term individual-level studies (such as follow-ups of previous

true connection costs for many schools.
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RCTs which evaluated relatively short-term impacts of technology) as an avenue for relevant future

research.
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